

Chem 202

Dr. Qana Alsulami Assistant professor

Contact Info: <u>qalselami@kau.edu.sa</u>

Web Site: http://qalselami.kau.edu.sa

Technicalities

Locations:

- Science tower 07 room 174 first floor
- $^\circ\,$ phone 6400000 ext. 23024
- email <u>Qalselami@kau.edu.sa</u>
- web site: <u>http://qalselami.kau.edu.sa</u>

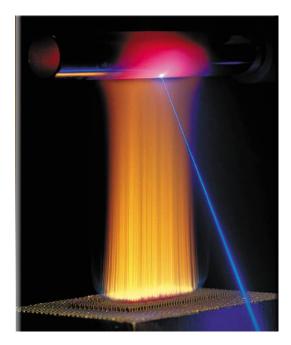
Learning Resources

Main text books:

□ Chemistry, by Chang, 9th. ed., 2007, McGraw-Hill.

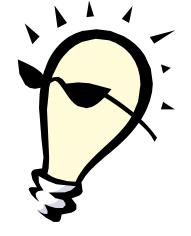
Subsidiary books:

□ Chemistry, by Mortimer, 6th ed., 1986, Wadsworth Inc.


□ Chemistry, by Steven S. Zumdahl, 6th ed., Houghton Mifflin College Div.

Course Grading:

First exams	15 marks (Chapters 6,18)
Second exam	15 marks (Chapters 19,12)
Assignments	5 marks
Labs	25 marks
Final exam	40 marks
Total	100 marks

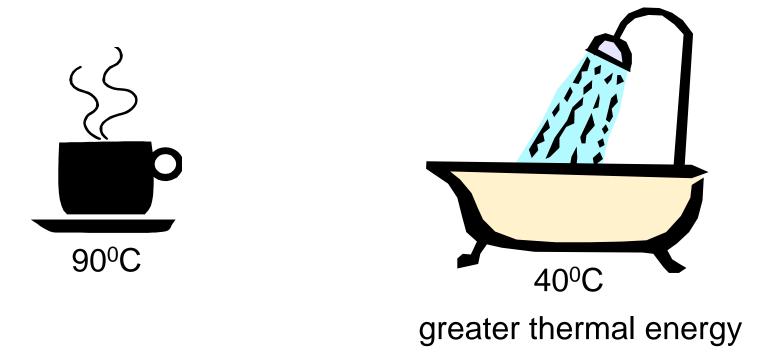

Thermochemistry Chapter 6

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Energy is the capacity to do work

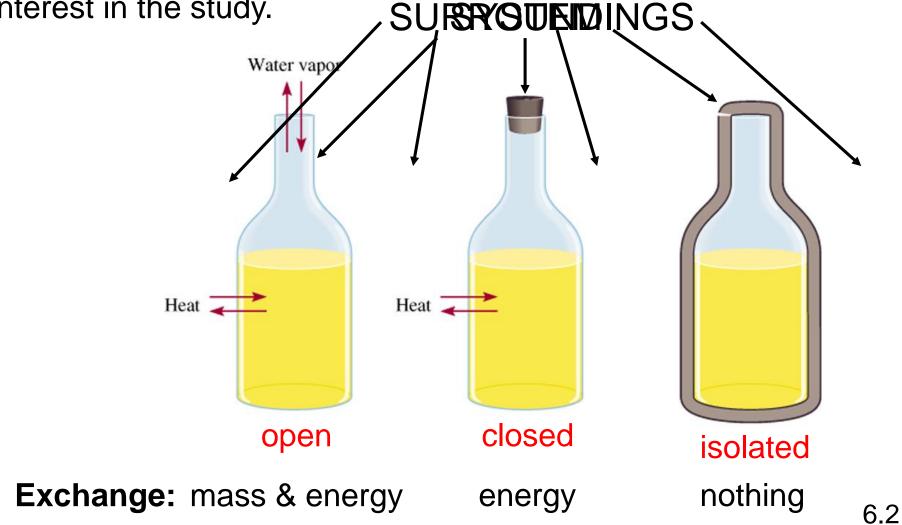
- Radiant energy comes from the sun and is earth's primary energy source
- **Thermal energy** is the energy associated with the random motion of atoms and molecules
- Chemical energy is the energy stored within the bonds of chemical substances
- *Nuclear energy* is the energy stored within the collection of neutrons and protons in the atom
- Potential energy is the energy available by virtue of an object's position

6.1


Energy Changes in Chemical Reactions

Heat is the transfer of **thermal energy** between two bodies that are at different temperatures.

Temperature is a measure of the thermal energy.

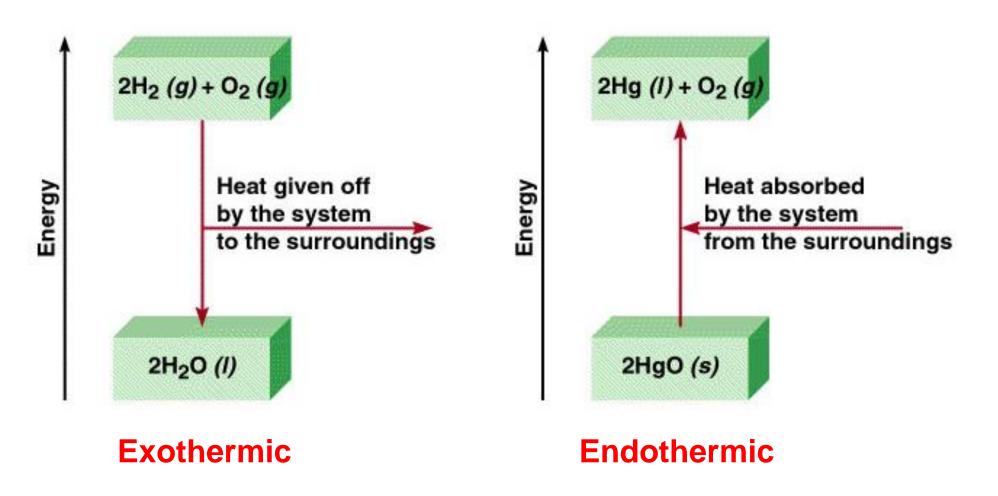


Temperature Thermal Energy

Thermochemistry is the study of heat change in chemical reactions.

The **system** is the specific part of the universe that is of interest in the study.

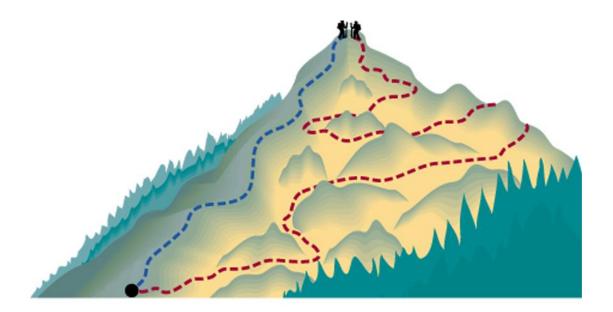
Exothermic process is any process that gives off heat – transfers thermal energy from the system to the surroundings.


$$2H_2(g) + O_2(g) \longrightarrow 2H_2O(l) + energy$$

$$H_2O(g) \longrightarrow H_2O(l) + energy$$

Endothermic process is any process in which heat has to be supplied to the system from the surroundings.

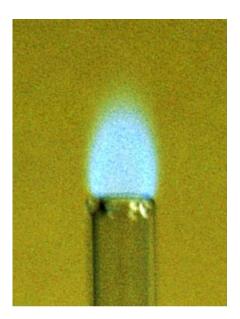
energy + 2HgO (s)
$$\longrightarrow$$
 2Hg (l) + O₂ (g)


energy +
$$H_2O(s) \longrightarrow H_2O(l)$$

Thermodynamics

State functions are properties that are determined by the state of the system, regardless of how that condition was achieved.

energy, pressure, volume, temperature


$$\Delta E = E_{final} - E_{initial}$$
$$\Delta P = P_{final} - P_{initial}$$
$$\Delta V = V_{final} - V_{initial}$$
$$\Delta T = T_{final} - T_{initial}$$

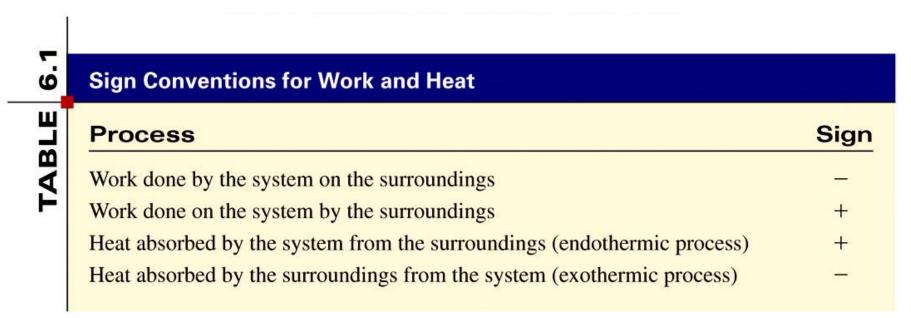
Potential energy of hiker 1 and hiker 2 is the same even though they took different paths.

$$\Delta E_{system} + \Delta E_{surroundings} = 0$$

$$\Delta E_{\text{system}} = -\Delta E_{\text{surroundings}}$$

$$C_3H_8 + 5O_2 \longrightarrow 3CO_2 + 4H_2O$$

Exothermic chemical reaction!


Chemical energy **lost** by combustion = Energy **gained** by the surroundings **system** 6.3

Another form of the *first law* for ΔE_{system}

$\Delta E = q + w$

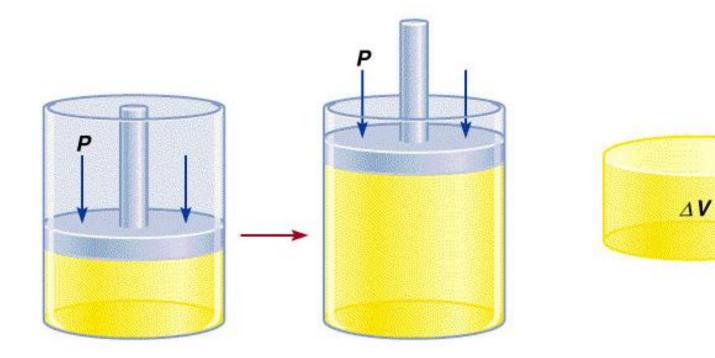
 ΔE is the change in internal energy of a system

- **q** is the heat exchange between the system and the surroundings
- **w** is the work done on (or by) the system
- $w = -P \Delta V$ when a gas expands against a constant external pressure

Work Done On the System W = F d $W = -P \Delta V$ $\Delta V > 0$ -PAV < 0 $P \times V = \frac{F}{d^2} \times d^3 = Fd = W$ $W_{sys} < 0$ $\Delta E = q + w = q - p \Delta V$ Work is

not a P state function! $\Delta W \not\ge W_{final} - W_{initial}$ initial final 6.3 A sample of nitrogen gas expands in volume from 1.6 L to 5.4 L at constant temperature. What is the work done in joules if the gas expands (a) against a vacuum and (b) against a constant pressure of 3.7 atm?

$$w = -P \varDelta V$$


(a)
$$\Delta V = 5.4 L - 1.6 L = 3.8 L$$
 $P = 0 atm$

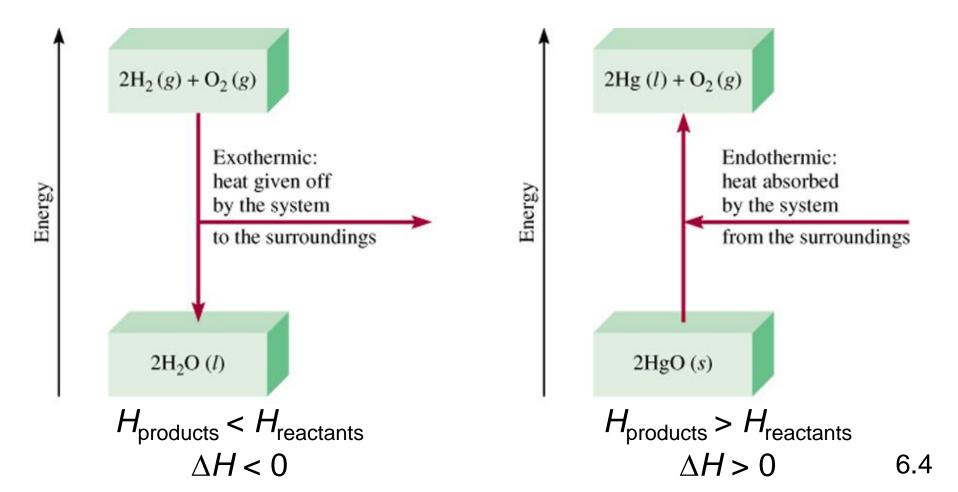
W = -0 atm x 3.8 L = 0 L•atm = 0 joules

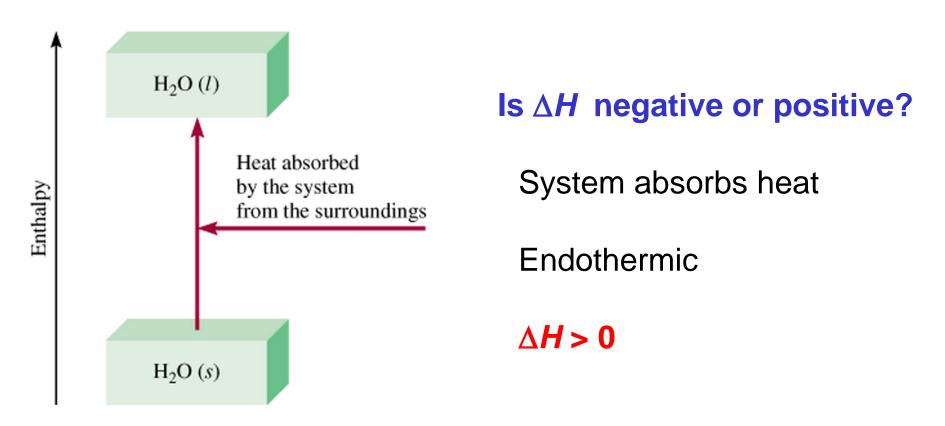
(b)
$$\Delta V = 5.4 L - 1.6 L = 3.8 L$$
 $P = 3.7 atm$

$$w = -3.7 \text{ atm x } 3.8 \text{ L} = -14.1 \text{ L} \cdot \text{atm}$$

 $w = -14.1 \text{ L} \cdot \text{atm x } \frac{101.3 \text{ J}}{1 \text{ L} \cdot \text{atm}} = -1430 \text{ J}$

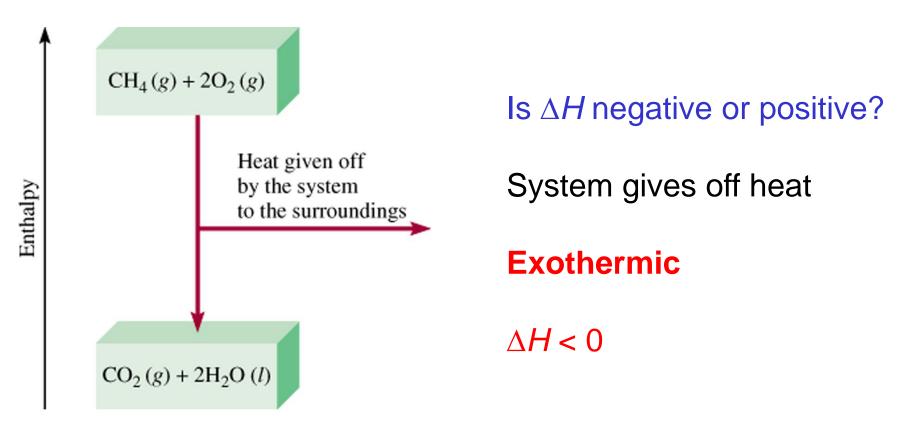
Enthalpy and the First Law of Thermodynamics $\Delta E = q + w$ At Constant Temperature At constant pressure: $q_p = \Delta H$ and $w = -P\Delta V$ $\Delta E = \Delta H - P\Delta V$ At Constant Pressure $\Delta H = \Delta E + P\Delta V$




6.4

Enthalpy (H) is used to quantify the heat flow into or out of a system in a process that occurs at constant pressure.

$$\Delta H = H$$
 (products) – H (reactants)


 ΔH = heat given off or absorbed during a reaction **at constant pressure**

6.01 kJ are absorbed for every 1 mole of ice that melts at 0°C and 1 atm.

$$H_2O(s) \longrightarrow H_2O(l)$$
 $\Delta H = 6.01 \text{ kJ}$

890.4 kJ are released for every 1 mole of methane that is combusted at 25°C and 1 atm.

 $CH_4(g) + 2O_2(g) \longrightarrow CO_2(g) + 2H_2O(h) \quad \Delta H = -890.4 \text{ kJ}$

• The stoichiometric coefficients always refer to the number of moles of a substance

$$H_2O(s) \longrightarrow H_2O(l) \qquad \Delta H = 6.01 \text{ kJ}$$

• If you reverse a reaction, the sign of ΔH changes

$$H_2O(h) \longrightarrow H_2O(s) \quad \Delta H = -6.01 \text{ kJ}$$

 If you multiply both sides of the equation by a factor *n*, then △*H* must change by the same factor *n*.

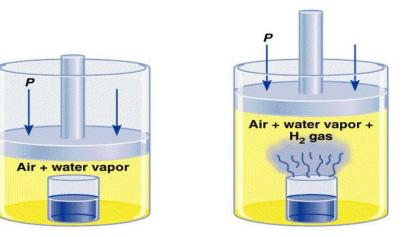
2H₂O (*s*) → **2**H₂O (*l*) $\Delta H =$ **2** × 6.01 = **12.0** kJ

The physical states of all reactants and products must be • specified in thermochemical equations.

$$H_2O(s) \longrightarrow H_2O(h) \qquad \Delta H = 6.01 \text{ kJ}$$
$$H_2O(h) \longrightarrow H_2O(g) \qquad \Delta H = 44.0 \text{ kJ}$$

How much heat is evolved when 266 g of white

phosphorus (P₄) burn in air? P₄ (s) + 5O₂ (g) \longrightarrow P₄O₁₀ (s) $\Delta H = -3013$ kJ


266 g
$$P_4 \times \frac{1 \text{ mol } P_4}{123.9 \text{ g } P_4} \times \frac{3013 \text{ kJ}}{1 \text{ mol } P_4} = 6470 \text{ kJ}$$

A Comparison of ΔH and ΔE

Find ΔE for the reaction: 2Na (s) + 2H₂O (l) \longrightarrow 2NaOH (aq) + H₂ (g) $\Delta H = -367.5$ kJ/mol

 $\Delta E = \Delta H - P \Delta V$ At 25 °C, 1 mole H₂ = 24.5 L at 1 atm $P \Delta V = 1$ atm x 24.5 L = 2.5 kJ

= 1 atm x 24.5 Lx 101.3 / 1000 = 2.5 kJ $\Delta E = -367.5 \text{ kJ/mol} - 2.5 \text{ kJ/mol} = -370.0 \text{ kJ/mol}$

A Comparison of ΔH and ΔE

- the total energy of a chemical system at constant pressure
- (conditions of most reactions)
- cannot measure enthalpy directly, but can measure changes in enthalpy

 $\Delta \mathbf{H} = \mathbf{H}_{\text{products}} - \mathbf{H}_{\text{reactant}}$ $\Delta \mathbf{E} = \Delta \mathbf{H} - \Delta \mathbf{PV} \qquad \text{and } \mathbf{PV} = \mathbf{nRT}, \text{ so}$

 $\Delta \mathbf{E} = \Delta \mathbf{H} - \mathbf{RT} \Delta \mathbf{n}$

- $\Delta \mathbf{n} = \mathbf{0} \qquad \Delta \mathbf{E} = \Delta \mathbf{H}$
- $\Delta n > 0$ $\Delta E = \Delta H \Delta n RT$
- $\Delta \mathbf{n} < \mathbf{0}$ $\Delta \mathbf{E} = \Delta \mathbf{H} + \mathbf{RT} \Delta \mathbf{n}$

 Δ n = n of product gases – n of reactant gases

Example 6-4

 Calculate the change in internal energy when 2 moles of CO are converted to 2 moles of CO₂ at 1 atm and 25 °C

> 2CO (g) + O₂ (g) \rightarrow 2CO₂ (g) $\Delta H = -566 \text{ kJ/mol}$ $\Delta E = \Delta H - \Delta n RT$ $\Delta n = 2 - 3 = -1$

 $\Delta E = -566 - (-1) (8.314) / 1000 (298) = -563.5 \text{ kJ}$

Calculate the change in internal energy for the formation of 1 mole of CO at 1 atm and 25 $^{\circ}$ C

C (graphite) + $\frac{1}{2}O_2(g)$ → CO (g) $\Delta H = -110.5 \text{ kJ/mol}$ $\Delta E = \Delta H - \Delta n RT$ $\Delta n = 1 - \frac{1}{2} = \frac{1}{2}$ $\Delta E = -110.5 - (\frac{1}{2}) (8.314) / 1000 (298) = -111.7 \text{ kJ}$ The **specific heat (s)** of a substance is the amount of heat **(***q***)** required to raise the temperature of **one gram** of the substance by **one degree** Celsius.

The *heat capacity* (*C*) of a substance is the amount of heat (*q*) required to raise the temperature of a given quantity (*m*) of the substance by one degree Celsius.

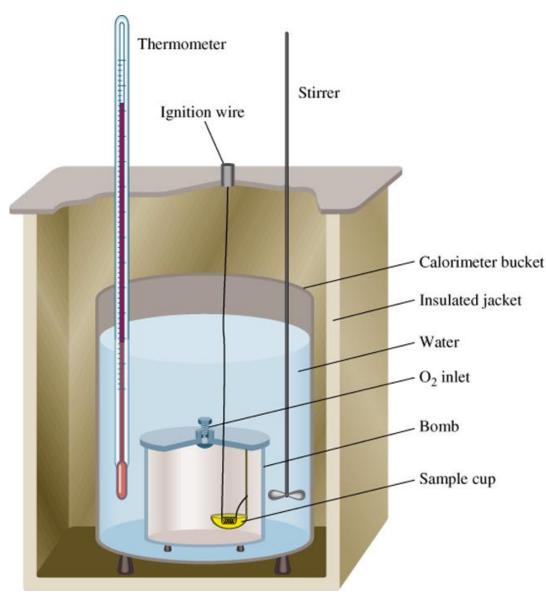
The Specific Heats of Some Common Substances		6.2
Substance	Specific Heat (J/g∙°C)	TABLE
Al	0.900	「
Au	0.129	
C (graphite)	0.720	
C (diamond)	0.502	
Cu	0.385	
Fe	0.444	
Hg	0.139	
H ₂ O	4.184	
C ₂ H ₅ OH (ethanol)	2.46	

C = *m*s

Heat (q) absorbed or released:

 $q = ms \Delta t$ $q = C \Delta t$ $\Delta t = t_{\text{final}} - t_{\text{initial}}$

How much heat is given off when an 869 g iron bar cools from $94^{\circ}C$ to $5^{\circ}C$?


s of Fe = $0.444 \text{ J/g} \cdot {}^{0}\text{C}$

 $\Delta t = t_{\text{final}} - t_{\text{initial}} = 5^{\circ}\text{C} - 94^{\circ}\text{C} = -89^{\circ}\text{C}$

 $q = ms\Delta t = 869 g \times 0.444 J/g \cdot {}^{0}c \times -89{}^{0}c = -34,000 J$

Find the final temperature when 34000 j of heat evolved (given off) on cooling 869 g of Iron bar at 94 °C? s of Fe = $0.444 \text{ J/g} \cdot {}^{0}\text{C}$ $q = mxsx\Delta T$ $-34000 = 869 g \times 0.444 \text{ J/g} \cdot {}^{0}\text{C} \times \Delta T$ $\Delta T = -34000/869 \times 0.444 = -89 \,{}^{\circ}\text{C}$ $T_{f} = T_{i} + \Delta T = 94 - 89 = 5 \,{}^{\circ}\text{C}$

Constant-Volume Calorimetry



 $q_{sys} = q_{water} + q_{bomb} + q_{rxn}$ $q_{sys} = 0$ $q_{rxn} = - (q_{water} + q_{bomb})$ $q_{water} = m s \Delta t$ $q_{bomb} = C_{bomb} \Delta t$

Reaction at Constant V $\Delta H \neq q_{rxn}$ $\Delta H \sim q_{rxn}$

No heat enters or leaves!

Constant-Pressure Calorimetry

$$q_{sys} = q_{water} + q_{cal} + q_{rxn}$$
$$q_{sys} = 0$$
$$q_{rxn} = - (q_{water} + q_{cal})$$
$$q_{water} = ms\Delta t$$
$$q_{cal} = C_{cal}\Delta t$$

Reaction at Constant P $\Delta H = q_{rxn}$

No heat enters or leaves!

3						
6.	Heats of Some Typic	eats of Some Typical Reactions Measured at Constant Pressure				
TABLE	Type of Reaction	Example	∆ <i>H</i> (kJ/mol)			
4 F	Heat of neutralization	$HCl(aq) + NaOH(aq) \longrightarrow NaCl(aq) + H_2O(l)$	-56.2			
	Heat of ionization	$H_2O(l) \longrightarrow H^+(aq) + OH^-(aq)$	56.2			
	Heat of fusion	$H_2O(s) \longrightarrow H_2O(l)$	6.01			
	Heat of vaporization	$H_2O(l) \longrightarrow H_2O(g)$	4 <mark>4.</mark> 0*			
	Heat of reaction	$MgCl_2(s) + 2Na(l) \longrightarrow 2NaCl(s) + Mg(s)$	-180.2			

*Measured at 25°C. At 100°C, the value is 40.79 kJ.

Chemistry in Action:

Fuel Values of Foods and Other Substances

 $C_6H_{12}O_6(s) + 6O_2(g) \longrightarrow 6CO_2(g) + 6H_2O(I) \Delta H = -2801 \text{ kJ/mol}$

1 cal = 4.184 J

1 Cal = 1000 cal = 4184 J

Nutrition Fac Serving Size 6 cookies (28g) Servings Per Container about 1		
Amount Per Serving		
Calories 120 Calories from F	at 30	
% Daily V	alue*	
Total Fat 4g	6%	
Saturated Fat 0.5g	4%	
Polyunsaturated Fat 0g		
Monounsaturated Fat 1g		
Cholesterol 5mg	2%	
Sodium 105mg	4%	
Total Carbohydrate 20g	7%	
Dietary Fiber Less than 1 gram	2%	
Sugars 7g		
Protein 2g		

Because there is no way to measure the absolute value of the enthalpy of a substance, must I measure the enthalpy change for every reaction of interest?

Establish an arbitrary scale with the standard enthalpy of formation (ΔH_f^0) as a reference point for all enthalpy expressions.

Standard enthalpy of formation (ΔH_f^0) is the heat change that results when **one mole** of a compound is formed from its **elements** at a pressure of 1 atm.

The standard enthalpy of formation of any element in its most stable form is zero.

$$\Delta H^0_f(O_2) = 0 \qquad \Delta H^0_f(C, \text{ graphite}) = 0$$

$$\Delta H^0_f(O_3) = 142 \text{ kJ/mol} \qquad \Delta H^0_f(C, \text{ diamond}) = 1.90 \text{ kJ/mol}$$

6.6

$$CaCO_3 = CaO + CO_2$$
, ΔH_{f}^{o}

 $C_{graphite} + O_2 (g) = CO2 (g) , \Delta H_f^o$

Which of the following reactions represent heat of formation of nitric acid HNO3 ? H (g) + N (g)+ O3 (g) = HNO3 (l) H2 (g) + N2 (g) + O2 (g) = HNO3(l) H2 (g) + N2 (g) + 3O2 (g) = 2HNO3 (l) The standard enthalpy of reaction (ΔH_{rxn}^0) is the enthalpy of a reaction carried out at 1 atm.

$$aA + bB \longrightarrow cC + dD$$

 $\Delta H_{rxn}^{0} = \left[c \Delta H_{f}^{0} (C) + d \Delta H_{f}^{0} (D) \right] - \left[a \Delta H_{f}^{0} (A) + b \Delta H_{f}^{0} (B) \right]$

 $\Delta H_{rxn}^0 = \Sigma n \Delta H_f^0$ (products) - $\Sigma n \Delta H_f^0$ (reactants)

Hess's Law: When reactants are converted to products, the **change in enthalpy is the same** whether the reaction takes place in **one step or in a series of steps**.

(Enthalpy is a state function. It doesn't matter how you get there, only where you start and end.)

Calculate the standard enthalpy of formation of CS_2 (*I*) given that: $C(graphite) + O_2(g) \longrightarrow CO_2(g) \qquad \Delta H_{rxn}^0 = -393.5 \text{ kJ}$ $S(rhombic) + O_2(g) \longrightarrow SO_2(g) \qquad \Delta H_{rxn}^0 = -296.1 \text{ kJ}$ $CS_2(I) + 3O_2(g) \longrightarrow CO_2(g) + 2SO_2(g) \qquad \Delta H_{rxn}^0 = -1072 \text{ kJ}$ 1. Write the enthalpy of formation reaction for CS_2

2. Add the given rxns so that the result is the desired rxn.

6.6

$$C(graphite) + O_2(g) \longrightarrow CO_2(g) \qquad \Delta H^0_{rxn} = -393.5 \text{ kJ}$$

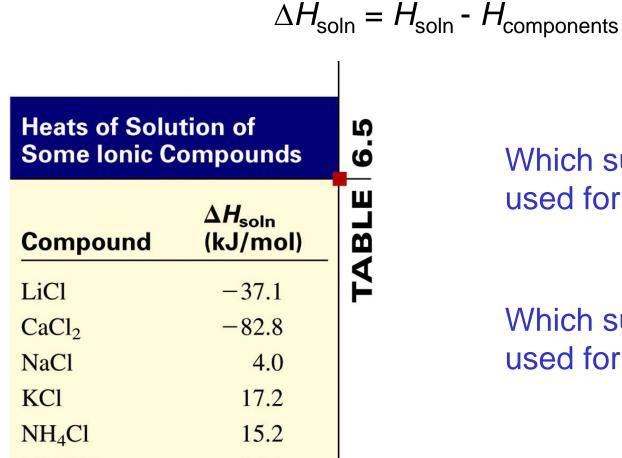
$$2S(rhombic) + 2O_2(g) \longrightarrow 2SO_2(g) \qquad \Delta H^0_{rxn} = -296.1 \text{ x2 kJ}$$

$$+ CO_2(g) + 2SO_2(g) \longrightarrow CS_2(l) + 3O_2(g) \qquad \Delta H^0_{rxn} = +1072 \text{ kJ}$$

C(graphite) + 2S(rhombic) → $CS_2(I)$ $\Delta H_{rxn}^0 = -393.5 + (2x-296.1) + 1072 = 86.3 kJ$

Benzene (C_6H_6) burns in air to produce carbon dioxide and liquid water. How much heat is released per mole of benzene combusted? The standard enthalpy of formation of benzene is 49.04 kJ/mol.

$$2C_6H_6(l) + 15O_2(g) \longrightarrow 12CO_2(g) + 6H_2O(l)$$

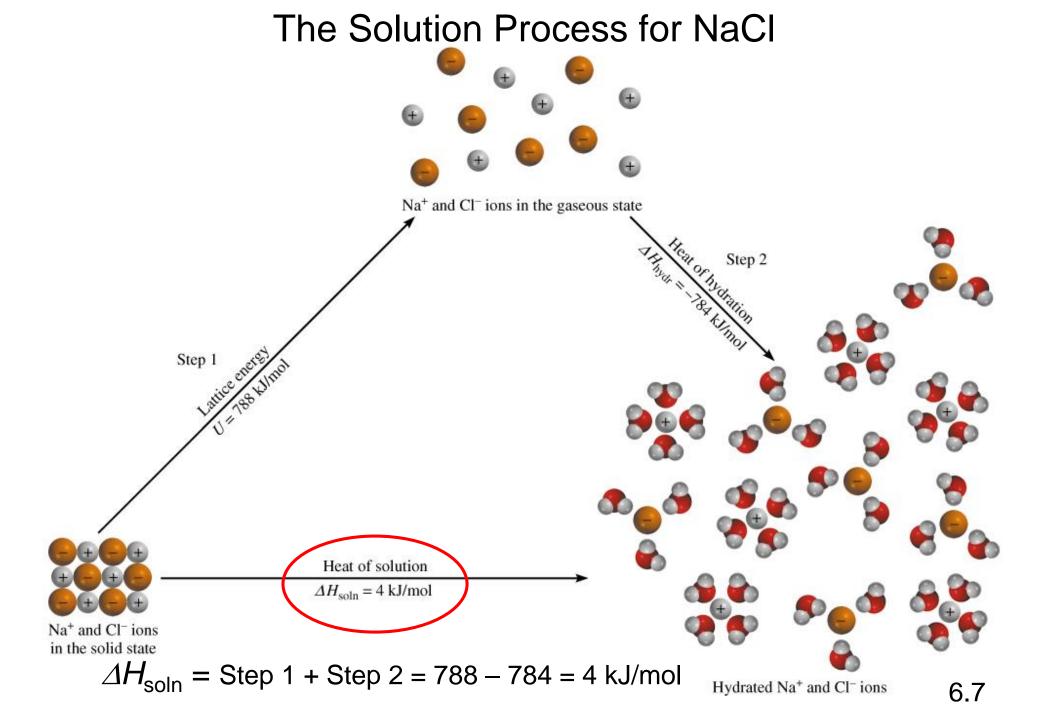

 $\Delta H_{rxn}^0 = \Sigma n \Delta H_f^0$ (products)- $\Sigma n \Delta H_f^0$ (reactants)

 $\Delta H_{rxn}^{0} = [12\Delta H_{f}^{0} (CO_{2}) + 6\Delta H_{f}^{0} (H_{2}O)] - [2\Delta H_{f}^{0} (C_{6}H_{6})]$

 $\Delta H_{rxn}^0 = [12x-393.5 + 6x-187.6] - [2x49.04] = -5946 \text{ kJ}$

$$\frac{-5946 \text{ kJ}}{2 \text{ mol}} = -2973 \text{ kJ/mol } C_6 H_6$$

The *enthalpy of solution* (ΔH_{soln}) is the heat generated or absorbed when a certain amount of solute dissolves in a certain amount of solvent.



26.2

NH₄NO₃

Which substance(s) could be used for melting ice?

Which substance(s) could be used for a cold pack?

